

Contact:
JobPack
847-741-1861
www.jobpack.com

Agenda

01 Introduction to OEE

1

What is OEE and how it can help you

03 Data capture

How you can collect the required data in Seiki AIR & product demo

05 Q&A

We want to hear from you – this is your opportunity to ask us any questions that you may have

The theory

Learn about the theory of OEE and how it's calculated

4 Continuous improvement

How to use OEE as an effective tool for improving manufacturing productivity

What is OEE

Powerful KPI for measuring manufacturing productivity

Uncover all the TIME that is lost through the manufacturing process

Availability

How much time is lost to unplanned machine/resource downtime

Performance

How much time is lost by not making parts within their standard times

Quality

How much time is lost by manufacturing non-conforming parts

The benefits of OEE

- Helps you identify and tackle waste and losses across your entire manufacturing process
- Helps you improve the productivity and throughput of your manufacturing resources
- Helps you improve the accuracy of your production planning
- Helps you benchmark progress
- Helps you improve the ratio between what your customers pay for and the actual total time (cost) to manufacture parts, i.e. your margin

Calculating OEE - Availability

Utilisation: 50%

Total Planned Hours

Running Hours

Downtime

Machine utilisation tells me how much productivity I've lost to downtime

Availability: 66%

Total Planned Hours

Running Hours

Unplanned downtime

- Planned downtime

"Availability" refines the calculation further by subtracting planned downtime from the planned hours, i.e. time that you were never going to be productive

Calculating OEE - Performance

Calculating OEE - Quality

2 good parts 1 non-conformance

Quality: 66%

Calculating OEE

Calculating OEE

- C Planned Parts 4 parts
- D Booked Parts 3 parts Speed Losses Performance = Booked Parts/Planned Parts based on standard cycle times

E Booked Parts – 3

Good Parts - 2

Non-Conforming Parts

Quality

= Good Parts/Booked Parts

OEE = 33%

Effective time = 2 hours

OEE = $4/6 \times 3/4 \times 2/3$

ilability Performance

Opportunities for improvement

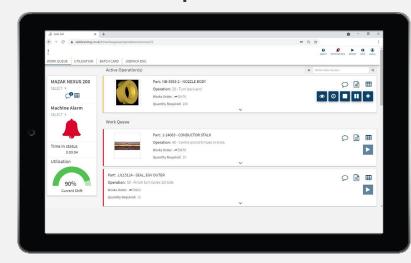
Total time lost:

Unplanned Downtime

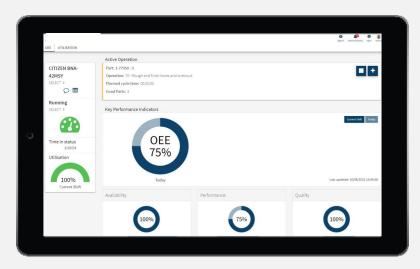
Speed Losses

Non-Conforming Parts

Now multiply this over all your resources and hundreds of operations!


...and when batch sizes are small, have long cycle times and/or you're running diverse products with differing cycle times, the challenge of calculating OEE is even greater.

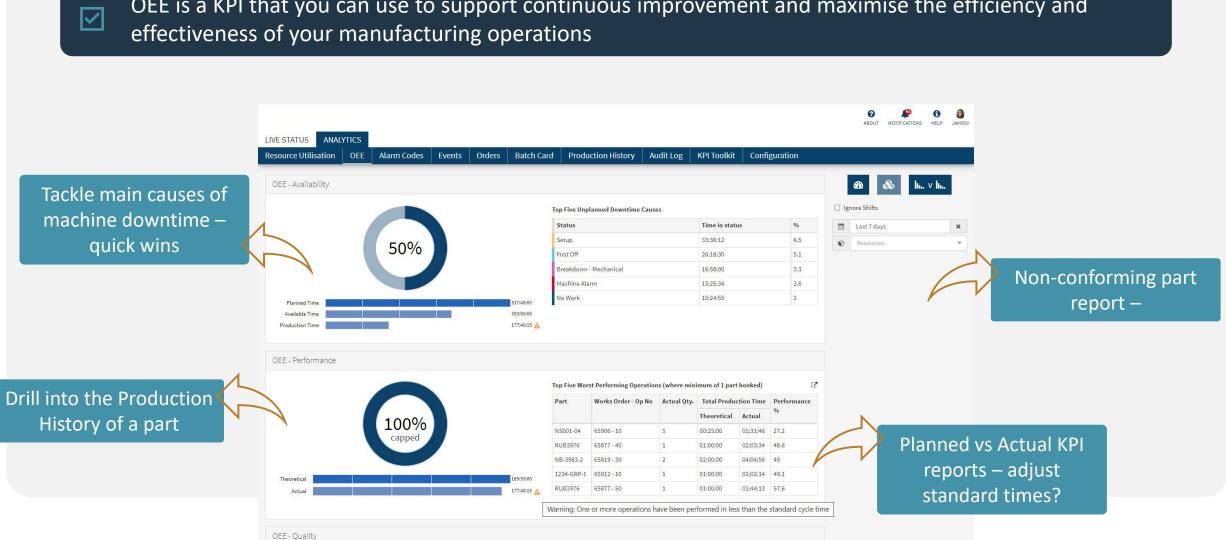
OEE with JobPack AIR


To accommodate this level of flexibility and complexity, and still achieve an accurate measure of your OEE, you need to have all the underlying data for each factor, part and resource

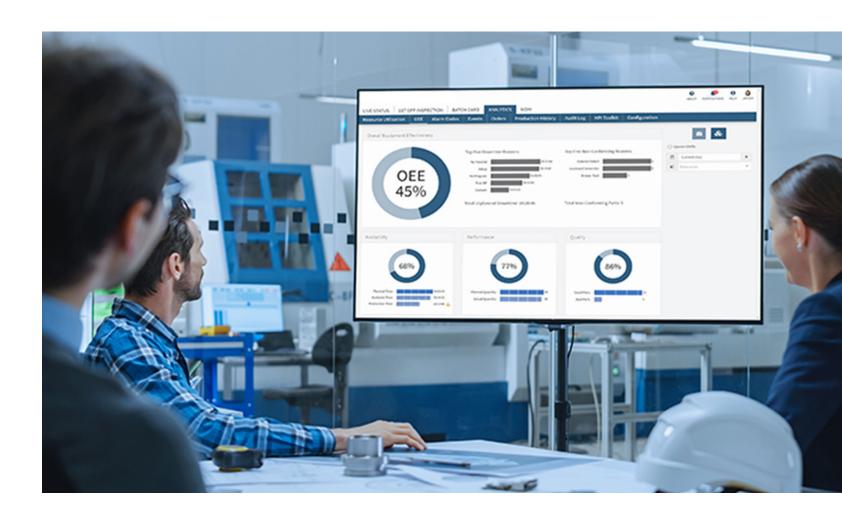
Option 1

JobPack AIR Monitoring + WIP Booking (requires JobPack Scheduler or integration with 3rd Party ERP)

Option 2


JobPack AIR Monitoring only OEE (standalone)

Using OEE



OEE is a KPI that you can use to support continuous improvement and maximise the efficiency and

Your Questions...

